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ON THE ASYMPTOTIC BEHAVIOR 

OF K-MEANS 

J. MacQueen 

University of California, Los Angeles 

1.  Intrcduction. Let z_, z-,... be a random sequence of points (vectors) 

in E..,  each point being selected Independently of the preceding ones using 

a fixed probability measure p.  Thus PCz^ A] = p(A)  and PEz^^AJz^ z2, ••• ,z 

= pCA), n=l,2,,.,, for A any measurable set in £„, Relative to a given k-tuple 

x = (x-,x2, ...,x. ), x.eEj.,  1 = 1,2, ...k, we define a minlm-jn distance partitlor 

S(x) = (S^x), S2(x),...,Sk(x)) of Ejj, by S^x) = T^x), S2(x) = T2(x)S^(x),..., 

Sk(x) = Tk(x) S^(x)S^(x)...S^_1(x), where T^x) = (1:1 e EJJ , 

IS-Xjl^lS-x.j,   J = 1,2, ...,k).    The set    SAx) contains the points  in E^ nearest 

to x.,  with tied points being assigned arbitrarily to the set of lower  index. 

Note that with this  convention concerning tied points,   if x.=x.  and i < J 

then S.(x)  = 0.     Sample k-means    x «(x^x^ ...,x. ),     x    e EN,   i = lf ...,k, 

with associated integer weights    (w^ w2,... w ),  are now defined as  follows: 

xi = zi'wi = 1'     i * 1'2»*'"k'     a1101 for    n = i»2*«"  lf    ^n63! ' 
n+1    /nn. \//n,,\ n+1      n .   , ,    n+1      n      n+1 n  _       j   / ^ x"    = (x^Wj^ + zn+k)/(Wi +  1)>    wi    = w1 +  1,     and x^    = Xy w^      = w^  for J j« 1, 

where    Sn =  {S^,   S2,   ...,s")   is  the minimum distance partition relative to    x  . 

We  investigate the  asymptotic behavior of the k-means,  making the special 

assumptionR^i),     p is  absolutely continuous with respect to Lebesgue measure 

on EN,     and (il),   p(R)  = 1 for a closed and bounded convex set R C R ,     and 

p(A) > 0 for every open  set A ^ R.    For a given k-tuple    x = (x1,x2,.. .x^)   — 

such an entity being referred to hereafter as  a k-point -- let 

W(x)   = ^=1    Js   Iz-xJ^z)   , 

V(x)  = ^ Jg   |z.u1(x)l2dp(z)  , 
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where    S={S..,S2,.. .S  )     is the minimum distance partition relative to    x, 

and    u.(x)  ■   L    zdp(z)/p(S  )    or    u.(x)  = x.   according as    p(S  ) > 0    or 

pCS.) ■ 0,    If    x^   = u.(x),  1 = Xt2,,,,,'kf    we say the k-point    x    is unbiased. 

The principle result is 
1 2 Theorem 1.    The sequence of random varla'bles    W(x ),  W(x  ),   ...  converges  a.s. 

and W^ = 11m W(x ) is B.S. equal to V(x) for some x in the clegs of 

k-polnts x=(x:L, x2,.. .x, ) vhich are unbiased, and have the property that 

Xi ^ Xj   if i /  j. 

In lieu of a satisfactory strong law of large numbers for k-means, we 

obtain 

Theorem 2.      ^F n   (^7_n  P^lx^   - u") )/m -♦        0 aa m- " where u? = u. (x11)    and 

P^ = p(S1(:.n)). 

Potertial applications of the k-means concept, which will be discussed 

ir. detail elsewhere,  occur in certain taxomony problems,   in connection with 

coding and pattern recognition problems,   in the description of categorizing 

behavior,  and in connection with the problem of locating partitions with 

minimum average variance  [5]  (See Box  [l] and Ward  [6] for related results.). 

2.       Proofs.     The system of k-polnts  forms  a complete metric  space if the 

distance p(x,y)    between the k-polnts    x = (x^Xg, ...x )  and y = (y^jyg* •••yv)' 

is defined by    p(x,y) = ^v.-jClXx.jy.),  where    d(a,b)  is the Euclidian distance 

between    a    and    b.    We designate this  space by M and interpret continuity, 

limits,  convergence,  neighborhoods,  etc.,  in the usual way with respect to 

the metric topology of   M.    Of course,   every bounded sequence of    k-polnts 

contains a convergent subsequence. 
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Certaln difficulties encountered in the proof of 'Hieorem 1 are caused 
converffent 

by the possibility of the limit of a/sequence of k-points having some of 

its constituent points equal to each other.    With the end in view of 

circumventing these difficulties,   suppose that for a given k-point 

x = (X-^XJJ, ...^x, ),    x.e R,   i=l,2, ...,k,    we have    x.  = x.  for a cortrvin 

pair    ±,$,±<i,  and x.=x.^ x    for p. ^ i,  ^ i»      The points    x.     and    x 

being distinct in this way,  and considering assumption (ii) we necessarily 

have    p(S.(x)) > 0,     for    S (x)    certainly contains an open sub-set of R. 

The convention concerning tied points means  p(S (x))  = 0,    Now if  {y  ) = 

C(y^ y^»..»*yv)J     is  a sequence of k-points  satisfying    y^ e R,     and 

y1 ^ y^    if    i^J»     n=l,2,,»,,       and the sequence    y    approached x,   then 

y.   and    y      approach    x.= x.,     and hence each other;     they also approach 

the boundaries of    S.Cy11)    and    S.(yn)    in the vicinity of x..    The 

conditional means    u.(y  )    and    u.(y  ),    however,  must remain in the 

interior of the sets    S.(y )     and    S  (y11)    respectively,   and thus tend to 

become separated from the corresponding points    y.     and    y*   •    In fact, 

for each sufficiently large n,  the distance of u.Cy1)  from the boundary of 

S.(y ) or the distance of u (y )  from the boundary of S.(y ),  will exceed 

a certain positive number.    For as    n    tends to infinity,  p(S (y )) + p(S (y )) 

will approach    p(S  (x)) > 0 -- a simple continuity argument based on the 

absolute continuity of p will establish this   — and for each sufficiently 

large    n,     at least one of the probabilities    pCs^y ))    or    p(S.(y ))    will 

be positive by a definite amount,   say 6.    But in view of the boundedness of 

R,     a convex set of    p    measure at least    6 > 0 cannot have  its conditional 

mean arbitrarily near its boundary.     This  line of reasoning,  which extends 
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Immedlately to the case where some three or more members of (x^x^, ...x  ) 

are equal,   gives us 

Ler^iti 1.     Let    x = (x1>x0>.. .x. )    he the limit of a convergent sequence of 

k-points   (y11)  =  {(y^yg, ...y£))     satisfying    y" e R,  y"^ y"     if    1 ^ J,   n=l,2,... 

If x^Xj    for some    i^j  then 11m infn ^=;L p(S1(yn))|yJ  - u^y1)! > 0. 

Hence,   if l^.^, 2^=1 p(S1(yn))ly" - tii(y
n)|   = 0, each member of the 

k-tuple  (x-,x ,...x. )  is_ distinct  from the others. 

We remark that if each member of the k-tuple x^x-^x«, ., .x. )  is distinct 

from the others,   then    TT(y)  = (pCo^y)),   p(S2(y)),...  p(Sk(y)),    regarded 

as  a mapping of M onto E.,   is  continuous  at x— this  follows directly from 

the absolute continuity of p.     Similarly u(y)  = (u-Cy),   u2(y),., .u. (y)) 

regarded as  a mapping from M onto M is continuous  at x  — because of the 

absolute continuity of p and the boundness of R (finlteness of jzdp(z) 

would do.)     Putting this  remark together with Lemma 1,  we get 

Lemma 2.      Let x = (x^x-, ...x. )    be the limit of a convergent sequence of 

k-points   [y11)   =   {(y^,   y^.-yj))     satisfying    y^ e R,     y* ^ yj    If    1  ^ J. 

n=l,2,...   .     If llJnn^o^=1 p(S1(yn))|y" - u^y")   1   = 0    then 

27,  p(S  (x))lx.   - u.(xn)|   = 0    and each point    x.     in  the k-tuple (x^Xp, . ..x.) 

is distinct  from the others. 

Lemma 1 and 2 above are primarily technical in nature.     The heart of 

the proofs  of theorem 1 and 2 is  the following application of Martingale theory: 

Lcirjio 3.     Let t.,   tp,...,     and     ^j §2, ...        be given sequences of random 

variables,   and for each    n=l, 2,...,     let    t      be measurable with respect to 

P      where    ß..^ ßpC    ls_ a monotone  increasing sequence of    a - fields (belonging 

to the underlying probability space).    Suppose each of the following conditions 

holds     o^a.:   (i)   ItJ < K < "  ,   (n)     §n > 0,     ^ln<
co,   (iü) E(tnfl| ß^ßg, ... ßn) 

<t   +   5»    Then the sequences of random variables t. ^ tg,...     and    s0, s^s-, ..., 



.' 

-5- 

vhere    80 « O    ^d    sn = ^„i^i ~ E(t1+1lP1»P2, ••'^l^  n= 1'a»•••*      S2lfe 

converge a.s. 

Proof.    Let    y    = t   +8    ,     so that the    y      form a Martingale sequence. :== n        n      n-x n 
Let c be a positive number and consider the sequence {y ) obtained by 

stopping yn (see[2], p, 300) at the first n for which yn< -c. From 

(ill) we see that y>  -^IT   l^-Kand since    y    -y    ^ >   2K»     we have 

y   > max  (-^^T     5.   -Kf-(c+2K)),     The sequence  {y}  is  a Martingale,   so that 

Ey = Ey^^ ,   n=l,2, ..,,     and telng bounded from below with E|y,|< K,   certainly 

sup E|y  |  < oo.    The Martingale Theorem   [2,   p.   319]  shows     y    converges  a.s. 

But y = y    on the set A   where-jf?-,     ^>  -c- K,     1 = 1,2,...,     and (li) 

implies  P[A  1 — X as c - o.    Thus   (y } converge a.s.     This means 

o    = V^i - "fc^+x is a•s• hounded.     Using (ill) we can write -s = ^-i^-J^ ,A 

where A > 0.    But since    s      and 21,   §.   are a.s. hounded,   £ A.  converges a.s., 

s    converges   a.s,,   and finally»   so does     t  .    This  completes  the proof. 

Turning now to the proof of Thoorem 1,   let w    stand for the sequence 

Z.J,z2, ...z     .j..   ,     and let    A.     be  the event   Iz^+v6 Sl^•     Since    S is 
n+1 the minimum distance partition relative to x      , we have 

(1) EWx1*1)!^]  = E[^=1 JgirH  |z  - xf 1l2dP(2)l^n] 

<E[^=1Jsn   \z -xf1|2dp(z)|cün] 

= ^lE[^liSJ   i.-xf^^p^lA^.  ^Ipn. 

If    z^^e S^,   x^1 =    x" for    1  ^  J.    Th\as we obtain 
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1
*

1
)!^] < w(xn)   - ^=1(Jsnlz-xJl2dp(z))p5 

Several applications of the relation J lz-x|  dp(z)   =   Llz-ul   e.p{z) +  p(A)|x-ul     , 

where    jA(ii-z) dp(z)  = 0 ,   enahles us to vrlte the last term in (2)  as 

EJ.1tJs„|z-^l=ap(z)p5    .    (P°)2lx°- u»|2 

* (p^Uj- u^|a(w^i))2
+ Js„|z - ^iV^pjAw't i)2l. 

Combining this with (2)   ,  we get 

(3) ECw(x"fl) 1 on) < w(x
n) - ^1^ - u°|2(p°)2(a.5* l)/(v°+ I)2 

42 
f 

where      CT
n>(j= Jsnlz  " uj'   dP(z)/Pj   • 

Since we are assuming    p(P)  = 1»   certainly    W(x )   is  a.s. bounded, 
2 

as  is a     ..    We now show that 

CO 2:n(Pj)2/(w° + i)2 

converges  a.s.  for each    J=l,2, ...k,    therehy showing that 
Tr O n    ^ n ? 

T.  (2v_n[a  <(p4) /(w4
+ l) 3  converges a.s. Then Lemma 3 can be applied with n j-J- n^ j j    j 

V "^     -d §n= ^i<ö(PP2/<^ + 1)? 

It suffices to prove that 

(5) Wpj)2/t(e +1* w5)(ß +1 + vT1)] 

converges a.s. for any positive number ß ; also, this is convenient, for 

ECI
1
?!«« ) = p" where l" is the characteristic function of the event 

[z +ke r"], and on noting that w" = 1 + r^=1 I^ * a direct application 
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of Theorem 1,  p.  27^,  in  [3],   says that for any positive numbers or and ß, 

Ptß+I+Vj14"1^ 1 + Zj^pj - <ylij=1 Vj    for all    n= 1,2, ... ] > 1 - (l+oß)"1 , 

where v.  = p.  - (p.)      is the conditional variance of    I. given <«..    We take 

at=l,   and thus with probability at least 1 - (l+ß)"1 the series  (5)  is 

dominated by 
nx2/r/n _,_   _n-l /   iN2x   /,. JI    /„i\2 s>2 (P°)^/[(I+ %:t (pj)2) d^^pj)")] 

= ^^/(.^^(pj)2) - I/(I+I;=1(P5)2)] , 
which clearly converges. 

The choice of ß being arbitrary, we have shown that (h) converges a.s. 

Application of Lemma 3 as indicated above proves W(x  )  converges a.s. 

To identify the limit W^, note that with t and C taken as above. 

Lemma 3 entails a.s. convergence of Z [w(x ) - E[w(x ^l^n^» an<i hence (3) 

Implies  a.s.  convergence of 

Since (6) dominates 2 (2v_TpIJ|x^ - \x])/}m,  the latter converges a.s., 

and a little consideration makes   it clear that     Zv_1p.l::.   - u  |   = 

^„^pCS  (x  ))|xIJ - u (x  )1   converges to zero on a sub-sequence   {x s}     and 

that this  sub-sequence has  itself a convergent sub-sequence,   say  (x '''). 

Let x =  (x^Xg, ...xk)  - l^^x11*.     Since W(x)  = V(x) +  ^^(S  (x))lx -u(x)la 

and in particular    W(xn)  = V(xn) + Z^=1p(S (xn))lxj- u(xj)|2, we have only to 

show (a),   lim^    W(xnt)   = W^ W(x),   and (b),   lin1reo^l P(Sj(^nt)) l^-^^j*) I 

0 = 2-1  P(S.(X))|X,  - u.(x)|   •    Then    W(x)  = V(x)  and x is a.s« unbiased. 

(Obviously    SLiPjJs^i   = 0 if and only if    ^iPilsil     " 0' where p^^ > 0.) 
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We show that (a) is true "by establishing the continuity of W(x). 

We have 

with the last inequality following easily from the triangle inequality. Thus 

W(x) < W(y) + o(p(x,y)), end similarly W(y) < W(x) + o(p(x,y)). 

To est&bllsh ("b). Lemma 2 con he applied with [y } and (:: *) identified, 

for a.s. x. ^ x. for l^J, n=l>2, ... . It remains to remark that Lemma 2 

also implies a.s. x.j^x. for 1^ J. The  proof of Theorem 1 is complete. 

Theorem 2 follows from the a.s. convergence of ^nC^i-iP?!^ " u?l )/nlt 

upon applying an elementary result, (c.f. Theorem C, p. 203 in [h])  which says 

that if 2 a /n converges, ^±-T_a±/n ",0» 

3. Remarks. In a number of cases covered by Theorem 1, all the unbiased 

k-polnts have the same value of V, In this situation. Theorem 1 implies 

Z^ -pJxj- u.| converges a.s. to zero. An example is provided hy the uniform 

distribution over a disk in E^, "f k = 2, the unbiased k-points (x-jX^) with 

x, ^ x2 consist of the family of points x.,  and x„  opposite one another on 

a diameter, and at a certain fixed distance from the center of the disk. (There 

is one unbiased k-point with x. ■ x2, both x.  and x2 being at the center 

of the disk in this case.) The k-mear.s thus converge to some such relative 

position, but Theorem 1 does not quite permit us to eliminate the interesting 

possibility that the two means oscillate slowly but indefinitely around the 

center. 
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Theorem 1 provldea for a.s. convergence of Z?.! P? lx° - u° |     to zero 

In a slightly broader class of situations:    This  Is vhere the unbiased 

k-polnts    x ■ (x^Xg, ...x.) with    x / x    for    1 ^ it   are all stable In the 

sense that for each such x,    W(y) > w(x)    (and hence V(y) > V(x))     for all 

y In a neighborhood of    x.    In this case,  each such x falls  In one of 

finitely many equivalence classes such that   W    Is constant on each class. 

This  Is  Illustrated by the above example, where there Is only a single 

equivalence class.    If each of the equivalence classes contains only a single 

point.  Theorem 1 Implies a.s.  convergence of    xn to one of those points. 

There are unbiased k-polnts which are not stable.    Take a distribution 

on Ep which has sharp peaks of probability at each corner of a square,   and 

Is symetrlc about both diagonals.    With k=2,  the two constituent points can 

be symetrlcally located on a diagonal so that the boundary of the associated 

minimum distance partition coincides with the other diagonal.    With some 

adjustment,  such a k-point can be made to be unbiased,  and if the 

probability is sufficiently concentrated at the corners of the square,  any 

small movement of the two points off the diagonal in opposite directions, 

results  in a decrease in W(x).    It seems likely that the k-means cannot 

converge to such a configuration. 

C 
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